Как обозначаются скрещивающиеся прямые. Генетическая символика, оформление задач

13.04.2024

Символика генетики

Символика - перечень и объяснение условных названий и тер­минов, употребляемых в какой-либо отрасли науки.

Основы генетической символики были заложены Грегором Менде­лем, применившим буквенную символику для обозначения признаков. Доминантные признаки были обозначены заглавными буквами латин­ского алфавита А, В, С и т. д., рецессивные - малыми буквами - а, в, с и т. д. Буквенная символика, предложенная Менделем, по сути, алгеб­раическая форма выражения законов наследования признаков.

Для обозначения скрещивания принята следующая символика.

Родители обозначаются латинской буквой Р (Parents - родители), затем рядом записывают их генотипы. Женский пол обозначают сим­волом ♂ (зеркало Венеры), мужской - ♀ (щит и копье Марса). Между родителями ставят знак «х», обозначающий скрещивание. Генотип женской особи пишут на первом месте, а мужской - на втором.

Первое по­ коление обозначается F1 (Filli - дети), второе поколение - F2 и т. д. Рядом приводят обозначения генотипов потомков.

Словарь основных терминов и понятий

Альтернативные признаки – взаимоисключающие, контрастные признаки.

Гаметы (от греч. «гаметес » – супруг) – половая клетка растительного или животного организма, несущая один ген из аллельной пары. Гаметы всегда несут гены в «чистом» виде, т. к. образуются путем мейотического деления клеток и содержат одну из пары гомологичных хромосом.

Ген (от греч. «генос » – рождение) – участок молекулы ДНК, несущий информацию о первичной структуре одного конкретного белка.

Гены аллельные – парные гены, расположенные в идентичных участках гомологичных хромосом.

Генотип - совокупность наследственных задатков (генов) организма.

Гетерозигота (от греч. «гетерос » – другой и зигота) – зигота, имеющая два разных аллеля по данному гену (Аа, Вb ).

Гомозигота (от греч. «гомос » – одинаковый и зигота) – зигота, имеющая одинаковые аллели данного гена (оба доминантные или оба рецессивные).

Гомологичные хромосомы (от греч. «гомос » – одинаковый) – парные хромосомы, одинаковые по форме, размерам, набору генов. В диплоидной клетке набор хромосом всегда парный: одна хромосома из пары материнского происхождения, вторая – отцовская.

Доминантный признак (ген ) – преобладающий, проявляющийся – обозначается заглавными буквами латинского алфавита: А, В, С и т. д.

Рецессивный признак (ген) подавляемый признак – обозначается соответствующей строчной буквой латинского алфавита: а, b с и т. д

Скрещивание анализирующее – скрещивание испытуемого организма с другим, являющимся по данному признаку рецессивной гомозиготой, что позволяет установить генотип испытуемого.

Скрещивание дигибридное – скрещивание форм, отличающихся друг от друга по двум парам альтернативных признаков.

Скрещивание моногибридное – скрещивание форм, отличающихся друг от друга по одной паре альтернативных признаков.

Фенотип - совокупность всех внешних признаков и свойств организма, до­ступных наблюдению и анализу.

ü Алгоритм решения генетических задач

1. Внимательно прочтите уровень задачи.

2. Сделайте краткую запись условия задачи.

3. Запишите генотипы и фенотипы скрещиваемых особей.

4. Определите и запишите типы гамет, которые образуют скрещиваемые особи.

5. Определите и запишите генотипы и фенотипы полученного от скрещивания потомства.

6. Проанализируйте результаты скрещивания. Для этого определите количество классов потомства по фенотипу и генотипу и запишите их в виде числового соотношения.

7. Запишите ответ на вопрос задачи.

(При решении задач по определённым темам последовательность этапов может изменяться, а их содержание модифицироваться.)

ü Оформление задач

1. Первым принято записывать генотип женской особи, а затем – мужской (верная запись - ♀ААВВ х ♂аавв; неверная запись - ♂аавв х ♀ААВВ).

2. Гены одной аллельной пары всегда пишутся рядом (верная запись – ♀ААВВ; неверная запись ♀АВАВ).

3. При записи генотипа, буквы, обозначающие признаки, всегда пишутся в алфавитном порядке, независимо, от того, какой признак – доминантный или рецессивный – они обозначают (верная запись - ♀ааВВ; неверная запись -♀ ВВаа).

4. Если известен только фенотип особи, то при записи её генотипа пишут лишь те гены, наличие которых бесспорно. Ген, который невозможно определить по фенотипу, обозначают значком «_» (например, если жёлтая окраска (А) и гладкая форма (В) семян гороха – доминантные признаки, а зелёная окраска (а) и морщинистая форма (в) – рецессивные, то генотип особи с жёлтыми морщинистыми семенами записывают следующим образом: А_вв ).

5. Под генотипом всегда пишут фенотип.

6. Гаметы записывают, обводя их кружком (А).

7. У особей определяют и записывают типы гамет, а не их количество

верная запись неверная запись

♀ АА ♀ АА

А А А

8. Фенотипы и типы гамет пишутся строго под соответствующим генотипом.

9. Записывается ход решения задачи с обоснованием каждого вывода и полученных результатов.

10. Результаты скрещивания всегда носят вероятностный характер и выражаются либо в процентах, либо в долях единицы (например, вероятность образования потомства, восприимчивого к головне, 50%, или ½. Соотношение классов потомства записывается в виде формулы расщепления (например, жёлтосеменные и зелёносеменные растения в соотношении 1:1).

Пример решения и оформления задач

Задача. У арбуза зелёная окраска (А) доминирует над полосатой. Определите генотипы и фенотипы F1 и F2, полученных от скрещивания гомозиготных растений, имеющих зелёную и полосатую окраску плодов.

Наследственность - способность организмов передавать следующему поколению свои признаки и свойства, т. е. способность воспроизводить себе подобных.

Ген - участок молекулы ДНК, несущий информацию о структуре одного белка.

Генотип - совокупность всех наследственных свойств особи, наследственная основа организма, составленная совокупностью генов.

Фенотип - совокупность всех внутренних и внешних признаков и свойств особи, сформировавшихся на базе генотипа в процессе его индивидуального развития.

Моногибридное скрещивание - скрещивание родительских форм, наследственно различающихся лишь по одной паре признаков.

Доминирование - явление преобладания признаков при скрещивании.

Доминантный признак - преобладающий.

Рецессивный признак — отступающий или исчезающий.

Гомозиготы - особи, дающие при самоопылении по данной паре признаков однородное не расщепляющееся потомство.

Гетерозиготы - особи, дающие расщепление по данной паре признаков.

Аллели - различные формы одного и того же гена.

Дигибридное скрещивание - скрещивание родительских форм, различающихся по двум парам признаков.

Изменчивость - способность организмов изменять свои признаки й свойства.

Модификационная (фенотипическая) изменчивость - изменения фенотипа, возникающие под влиянием изменений внешних условий и не связанные с изменением генотипа.

Норма реакции - пределы модификационной изменчивости данного признака.

Мутации - изменения генотипа, вызванные структурными изменениями генов или хромосом.

Полиплоидия - кратное гаплоидному набору увеличение хромосом в клетке (3n, 4n и более).

В генетике пользуются такими общепринятыми символами:

  • буквой Р (от лат. «парента» - родители) обозначают родительские организмы, взятые для скрещивания;
  • знаком ♀ («зеркало Венеры») — обозначают женский пол;
  • ♂ («щит и копье Марса») - обозначают мужской иол.
  • Скрещивание обозначают знаком «X» , гибридное потомство обозначают буквой F (от лат. «филия» - дети) с цифрой, отвечающей порядковому номеру поколения - F 1 , F 2 , F 3 .

Сформулированные Г. Менделем законы

Правило доминирования , или первый закон: при моногибридном скрещивании у гибридов первого поколения проявляются только доминантные признаки — оно фенотипически единообразно.

Закон расщепления , или второй закон Г. Менделя: при скрещивании гибридов первого поколения в потомстве происходит расщепление признаков в отношении 3:1 - образуются две фенотипические группы - доминантная и рецессивная.

Закон независимого наследования (третий закон): при дигибридном скрещивании у гибридов каждая пара признаков наследуется независимо от других и дает с ним разные сочетания. Образуются четыре фенотипические группы, характеризующиеся отношением 9:3:3:1.

Ход моногибридного скрещивания (первый и второй законы Менделя)

Светлые кружки - организмы с доминантными признаками; темные - с рецессивным признаком.

Гипотеза чистоты гамет : находящиеся в каждом организме пары альтернативных признаков не смешиваются и при образовании гамет по одному от каждой пары переходят в них в чистом виде.

Для объяснения наблюдаемых закономерностей Мендель выдвинул гипотезу чистоты гамет, предположив следующее:

  • любой признак формируется под влиянием материального фактора (гена).
  • Фактор, определяющий доминантный признак, он определил заглавной буквой А, а рецессивный - а. Каждая особь содержит два фактора, определяющих развитие признака, один она получает от матери, другой - от отца.
  • При образовании гамет у животных и спор - у растений происходит редукция факторов и в каждую гамету или спору попадает только один.

Согласно этой гипотезе ход моногибридного скрещивания записывают так:

При любых сочетаниях гамет все гибриды имеют одинаковый генотип и фенотип.

В F 2 расщепление по генотипу будет 1АА; 2Аа; 1аа, а но фенотипу: 3 желтых, 1 зеленый (3:1).

Иногда у гибридов F 1 , не наблюдается полного доминирования, их признаки носят промежуточный характер. Такой характер наследования называют промежуточным, или неполным доминированием.

Пример: моногибридное скрещивание ночной красавицы: при неполном доминировании в F2 расщепление по фенотипу и генотипу выражается одинаковым соотношением: 1:2:1 (1 белый, 2 розовых, 1 красный).

Характер наследования был определен как независимое и сформулирован третий закон Менделя, или закон независимого наследования.

Независимое наследование имеет огромное значение для эволюции, так как является источником комбинативной изменчивости и многообразия живых организмов.

Закон сцепленного наследования

В 1911 году Томасом Морганом был сформулирован закон сцепленного наследования - сцепленные гены, локализованные в одной хромосоме, наследуются вместе и не обнаруживают независимого расщепления.

В каждой хромосоме сосредоточено несколько тысяч генов, по которым одна особь данного вида отличается от другой. Выясняя вопрос, как будут наследоваться признаки этих генов, Морган установил, что гены, расположенные в одной хромосоме, наследуются сцеплено, вместе, как одна альтернативная пара, не обнаруживая независимого наследования.

Сцепление не всегда бывает абсолютным. В профазе первого деления мейоза при конъюгации хромосом происходит их перекрест, вследствие чего гены, находящиеся в одной хромосоме, оказывались в разных гомологических хромосомах и попадали в разные гаметы.

Схема перекреста хромосом

Два гена, расположенные в одной хромосоме (светлые круги в одной из хромосом), в результате перекреста оказываются в разных гомологичных хромосомах.

Такой обмен приводит к перегруппировке сцепленных генов и является одним из источников комбинативной изменчивости.

Перекрест хромосом играет определенную роль в эволюции, так как новое сочетание генов вызывает появление новых признаков, которые могут оказаться полезными или вредными для организма и повлиять на их выживаемость.

Ген может одновременно влиять на формирование нескольких признаков, проявляя при этом множественное действие.

Точка — это абстрактный объект, который не имеет измерительных характеристик: ни высоты, ни длины, ни радиуса. В рамках задачи важно только его местоположение

Точка обозначается цифрой или заглавной (большой) латинской буквой. Несколько точек — разными цифрами или разными буквами, чтобы их можно было различать

точка A, точка B, точка C

A B C

точка 1, точка 2, точка 3

1 2 3

Можно нарисовать на листке бумаги три точки "А" и предложить ребёнку провести линию через две точки "А". Но как понять через какие? A A A

Линия — это множество точек. У неё измеряют только длину. Ширины и толщины она не имеет

Обозначается строчными (маленькими) латинскими буквами

линия a, линия b, линия c

a b c

Линия может быть

  1. замкнутой, если её начало и конец находятся в одной точке,
  2. разомкнутой, если её начало и конец не соединены

замкнутые линии

разомкнутые линии

Ты вышел из квартиры, купил в магазине хлеб и вернулся обратно в квартиру. Какая линия получилась? Правильно, замкнутая. Ты вернулся в исходную точку. Ты вышел из квартиры, купил в магазине хлеб, зашёл в подъезд и разговорился с соседом. Какая линия получилась? Разомкнутая. Ты не вернулся в исходную точку. Ты вышел из квартиры, купил в магазине хлеб. Какая линия получилась? Разомкнутая. Ты не вернулся в исходную точку.
  1. самопересекающейся
  2. без самопересечений

самопересекающиеся линии

линии без самопересечений

  1. прямой
  2. ломанной
  3. кривой

прямые линии

ломанные линии

кривые линии

Прямая линия — это линия которая не искривляется, не имеет ни начала, ни конца, её можно бесконечно продолжать в обе стороны

Даже когда виден небольшой участок прямой, предполагается, что она бесконечно продолжается в обе стороны

Обозначается строчной (маленькой) латинской буквой. Или двумя заглавными (большими) латинскими буквами — точками, лежащими на прямой

прямая линия a

a

прямая линия AB

B A

Прямые могут быть

  1. пересекающимися, если имеют общую точку. Две прямые могут пересекаться только в одной точке.
    • перпендикулярными, если пересекаются под прямым углом (90°).
  2. параллельными, если не пересекаются, не имеют общей точки.

параллельные линии

пересекающиеся линии

перпендикулярные линии

Луч — это часть прямой, которая имеет начало, но не имеет конца, её можно бесконечно продолжать только в одну сторону

У луча света на картинке начальной точкой является солнце

солнышко

Точка разделяет прямую на две части — два луча A A

Луч обозначается строчной (маленькой) латинской буквой. Или двумя заглавными (большими) латинскими буквами, где первая — это точка, с которой начинается луч, а вторая — точка, лежащая на луче

луч a

a

луч AB

B A

Лучи совпадают, если

  1. расположены на одной и той же прямой,
  2. начинаются в одной точке,
  3. направлены в одну сторону

лучи AB и AC совпадают

лучи CB и CA совпадают

C B A

Отрезок — это часть прямой, которая ограничена двумя точками, то есть она имеет и начало и конец, а значит можно измерить её длину. Длина отрезка — это расстояние между его начальной и конечной точками

Через одну точку можно провести любое число линий, в том числе прямых

Через две точки — неограниченное количество кривых, но только одну прямую

кривые линии, проходящие через две точки

B A

прямая линия AB

B A

От прямой «отрезали» кусочек и остался отрезок. Из примера выше видно, что его длина — наикратчайшее расстояние между двумя точками. ✂ B A ✂

Отрезок обозначается двумя заглавными(большими) латинскими буквами, где первая — это точка, с которой начинается отрезок, а вторая — точка, которой заканчивается отрезок

отрезок AB

B A

Задача: где прямая , луч , отрезок , кривая ?

Ломанная линия — это линия, состоящая из последовательно соединённых отрезков не под углом 180°

Длинный отрезок «поломали» на несколько коротких

Звенья ломаной (похожи на звенья цепи) — это отрезки, из которых состоит ломанная. Смежные звенья — это звенья, у которых конец одного звена является началом другого. Смежные звенья не должны лежать на одной прямой.

Вершины ломаной (похожи на вершины гор) — это точка, с которой начинается ломанная, точки, в которых соединяются отрезки, образующие ломаную, точка, которой заканчивается ломанная.

Обозначается ломанная перечислением всех её вершин.

ломанная линия ABCDE

вершина ломанной A, вершина ломанной B, вершина ломанной C, вершина ломанной D, вершина ломанной E

звено ломанной AB, звено ломанной BC, звено ломанной CD, звено ломанной DE

звено AB и звено BC являются смежными

звено BC и звено CD являются смежными

звено CD и звено DE являются смежными

A B C D E 64 62 127 52

Длина ломанной — это сумма длин её звеньев: ABCDE = AB + BC + CD + DE = 64 + 62 + 127 + 52 = 305

Задача: какая ломанная длиннее , а у какой больше вершин ? У первой линии все звенья одинаковой длины, а именно по 13см. У второй линии все звенья одинаковой длины, а именно по 49см. У третьей линии все звенья одинаковой длины, а именно по 41см.

Многоугольник — это замкнутая ломанная линия

Стороны многоугольника (помогут запомнить выражения: "пойти на все четыре стороны", "бежать в сторону дома", "с какой стороны стола сядешь?") — это звенья ломанной. Смежные стороны многоугольника — это смежные звенья ломанной.

Вершины многоугольника — это вершины ломанной. Соседние вершины — это точки концов одной стороны многоугольника.

Обозначается многоугольник перечислением всех его вершин.

замкнутая ломанная линия, не имеющая самопересечения, ABCDEF

многоугольник ABCDEF

вершина многоугольника A, вершина многоугольника B, вершина многоугольника C, вершина многоугольника D, вершина многоугольника E, вершина многоугольника F

вершина A и вершина B являются соседними

вершина B и вершина C являются соседними

вершина C и вершина D являются соседними

вершина D и вершина E являются соседними

вершина E и вершина F являются соседними

вершина F и вершина A являются соседними

сторона многоугольника AB, сторона многоугольника BC, сторона многоугольника CD, сторона многоугольника DE, сторона многоугольника EF

сторона AB и сторона BC являются смежными

сторона BC и сторона CD являются смежными

сторона CD и сторона DE являются смежными

сторона DE и сторона EF являются смежными

сторона EF и сторона FA являются смежными

A B C D E F 120 60 58 122 98 141

Периметр многоугольника — это длина ломанной: P = AB + BC + CD + DE + EF + FA = 120 + 60 + 58 + 122 + 98 + 141 = 599

Многоугольник с тремя вершинами называется треугольником, с четырьмя — четырёхугольником, с пятью — пятиугольником и т.д.

Бесконечность. Дж.Валлис (1655).

Впервые встречается в трактате английского математика Джон Валиса "О конических сечениях".

Основание натуральных логарифмов. Л.Эйлер (1736).

Математическая константа, трансцендентное число. Данное число иногда называют неперовым в честь шотландского учёного Непера, автора работы «Описание удивительной таблицы логарифмов» (1614). Впервые константа негласно присутствует в приложении к переводу на английский язык вышеупомянутой работы Непера, опубликованному в 1618 году. Саму же константу впервые вычислил швейцарский математик Якоб Бернулли в ходе решения задачи о предельной величине процентного дохода.

2,71828182845904523...

Первое известное использование этой константы, где она обозначалась буквой b , встречается в письмах Лейбница Гюйгенсу, 1690-1691 годы. Букву e начал использовать Эйлер в 1727 году, а первой публикацией с этой буквой была его работа «Механика, или Наука о движении, изложенная аналитически» 1736 год. Соответственно, e обычно называют числом Эйлера . Почему была выбрана именно буква e , точно неизвестно. Возможно, это связано с тем, что с неё начинается слово exponential («показательный», «экспоненциальный»). Другое предположение заключается в том, что буквы a , b , c и d уже довольно широко использовались в иных целях, и e была первой «свободной» буквой.

Отношение длины окружности к диаметру. У.Джонс (1706), Л.Эйлер (1736).

Математическая константа, иррациональное число. Число "пи", старое название - лудольфово число. Как и всякое иррациональное число, π представляется бесконечной непереодической десятичной дробью:

π =3,141592653589793...

Впервые обозначением этого числа греческой буквой π воспользовался британский математик Уильям Джонс в книге «Новое введение в математику», а общепринятым оно стало после работ Леонарда Эйлера. Это обозначение происходит от начальной буквы греческих слов περιφερεια - окружность, периферия и περιμετρος - периметр. Иоганн Генрих Ламберт доказал иррациональность π в 1761 году, а Адриен Мари Лежандр в 1774 году доказал иррациональность π 2 . Лежандр, и Эйлер предполагали, что π может быть трансцендентным, т.е. не может удовлетворять никакому алгебраическому уравнению с целыми коэффициентами, что было в конечном итоге доказано в 1882 году Фердинандом фон Линдеманом.

Мнимая единица. Л.Эйлер (1777, в печати - 1794).

Известно, что уравнение х 2 =1 имеет два корня: 1 и -1 . Мнимая единица - это один из двух корней уравнения х 2 =-1 , обозначается латинской буквой i , ещё один корень: -i . Это обозначение предложил Леонард Эйлер, взявший для этого первую букву латинского слова imaginarius (мнимый). Он же распространил все стандартные функции на комплексную область, т.е. множество чисел, представимых в виде a+ib , где a и b - действительные числа. В широкое употребление термин «комплексное число» ввёл немецкий математик Карл Гаусс в 1831 году, хотя этот термин ранее использовал в том же смысле французский математик Лазар Карно в 1803 году.

Единичные векторы. У.Гамильтон (1853).

Единичные векторы часто связывают с координатными осями системы координат (в частности, с осями декартовой системы координат). Единичный вектор, направленный вдоль оси Х , обозначается i , единичный вектор, направленный вдоль оси Y , обозначается j , а единичный вектор, направленный вдоль оси Z , обозначается k . Векторы i , j , k называются ортами, они имеют единичные модули. Термин "орт" ввёл английский математик, инженер Оливер Хевисайд (1892), а обозначения i , j , k - ирландский математик Уильям Гамильтон.

Целая часть числа, антье. К.Гаусс (1808).

Целой частью числа [х] числа х называется наибольшее целое число, не превосходящее х. Так, =5, [-3,6]=-4. Функцию [х] называют также "антье от х". Символ функции «целая часть» ввёл Карл Гаусс в 1808 году. Некоторые математики предпочитают использовать вместо него обозначение E(x), предложенное в 1798 году Лежандром.

Угол параллельности. Н.И. Лобачевский (1835).

На плоскости Лобачевского - угол между прямой b , проходящей через точку О параллельно прямой a , не содержащей точку О , и перпендикуляром из О на a . α - длина этого перпендикуляра. По мере удаления точки О от прямой a угол параллельности убывает от 90° до 0°. Лобачевский дал формулу для угла параллельности П(α )=2arctg e - α /q , где q — некоторая постоянная, связанная с кривизной пространства Лобачевского.

Неизвестные или переменные величины. Р. Декарт (1637).

В математике переменная - это величина, характеризующаяся множеством значений, которое она может принимать. При этом может иметься в виду как реальная физическая величина, временно рассматриваемая в отрыве от своего физического контекста, так и некая абстрактная величина, не имеющая никаких аналогов в реальном мире. Понятие переменной возникло в XVII в. первоначально под влиянием запросов естествознания, выдвинувшего на первый план изучение движения, процессов, а не только состояний. Это понятие требовало для своего выражения новых форм. Такими новыми формами и явились буквенная алгебра и аналитическая геометрия Рене Декарта. Впервые прямоугольную систему координат и обозначения х, у ввел Рене Декарт в своей работе «Рассуждение о методе» в 1637 году. Вклад в развитие координатного метода внес также Пьер Ферма, однако его работы были впервые опубликованы уже после его смерти. Декарт и Ферма применяли координатный метод только на плоскости. Координатный метод для трёхмерного пространства впервые применил Леонард Эйлер уже в XVIII веке.

Вектор. О.Коши (1853).

С самого начала вектор понимается как объект, имеющий величину, направление и (необязательно) точку приложения. Зачатки векторного исчисления появились вместе с геометрической моделью комплексных чисел у Гаусса (1831). Развитые операции с векторами опубликовал Гамильтон как часть своего кватернионного исчисления (вектор образовывали мнимые компоненты кватерниона). Гамильтон предложил сам термин вектор (от латинского слова vector , несущий ) и описал некоторые операции векторного анализа. Этот формализм использовал Максвелл в своих трудах по электромагнетизму, тем самым обратив внимание учёных на новое исчисление. Вскоре вышли «Элементы векторного анализа» Гиббса (1880-е годы), а затем Хевисайд (1903) придал векторному анализу современный вид. Сам знак вектора ввёл в использование французский математик Огюстен Луи Коши в 1853 году.

Сложение, вычитание. Я.Видман (1489).

Знаки плюса и минуса придумали, по-видимому, в немецкой математической школе «коссистов» (то есть алгебраистов). Они используются в учебнике Яна (Йоханнеса) Видмана «Быстрый и приятный счёт для всех торговцев», изданном в 1489 году. До этого сложение обозначалось буквой p (от латинского plus «больше») или латинским словом et (союз «и»), а вычитание - буквой m (от латинского minus «менее, меньше»). У Видмана символ плюса заменяет не только сложение, но и союз «и». Происхождение этих символов неясно, но, скорее всего, они ранее использовались в торговом деле как признаки прибыли и убытка. Оба символа вскоре получили общее распространение в Европе — за исключением Италии, которая ещё около века использовала старые обозначения.

Умножение. У.Оутред (1631), Г.Лейбниц (1698).

Знак умножения в виде косого крестика ввёл в 1631 году англичанин Уильям Оутред. До него использовали чаще всего букву M , хотя предлагались и другие обозначения: символ прямоугольника (французский математик Эригон, 1634), звёздочка (швейцарский математик Иоганн Ран, 1659). Позднее Готфрид Вильгельм Лейбниц заменил крестик на точку (конец XVII века), чтобы не путать его с буквой x ; до него такая символика встречалась у немецкого астронома и математика Региомонтана (XV век) и английского учёного Томаса Хэрриота (1560 -1621).

Деление. И.Ран (1659), Г.Лейбниц (1684).

Уильям Оутред в качестве знака деления использовал косую черту /. Двоеточием деление стал обозначать Готфрид Лейбниц. До них часто использовали также букву D . Начиная с Фибоначчи, используется также горизонтальная черта дроби, употреблявшаяся ещё у Герона, Диофанта и в арабских сочинениях. В Англии и США распространение получил символ ÷ (обелюс), который предложил Иоганн Ран (возможно, при участии Джона Пелла) в 1659 году. Попытка Американского национального комитета по математическим стандартам (National Committee on Mathematical Requirements ) вывести обелюс из практики (1923) оказалась безрезультатной.

Процент. М. де ла Порт (1685).

Сотая доля целого, принимаемого за единицу. Само слово «процент» происходит от латинского "pro centum", что означает в переводе "на сто". В 1685 году в Париже была издана книга «Руководство по коммерческой арифметике» Матье де ла Порта. В одном месте речь шла о процентах, которые тогда обозначали «cto» (сокращённо от cento). Однако наборщик принял это «cto» за дробь и напечатал "%". Так из-за опечатки этот знак вошёл в обиход.

Степени. Р.Декарт (1637), И.Ньютон (1676).

Современная запись показателя степени введена Рене Декартом в его «Геометрии » (1637), правда, только для натуральных степеней с показателями больших 2. Позднее, Исаак Ньютон распространил эту форму записи на отрицательные и дробные показатели (1676), трактовку которых к этому времени уже предложили: фламандский математик и инженер Симон Стевин, английский математик Джон Валлис и французский математик Альбер Жирар.

Арифметический корень n -й степени из действительного числа а ≥0, - неотрицательное число n -я степень которого равна а . Арифметический корень 2-й степени называется квадратным корнем и может записываться без указания степени: √ . Арифметический корень 3-й степени называется кубическим корнем. Средневековые математики (например, Кардано) обозначали квадратный корень символом R x (от латинского Radix , корень). Современное обозначение впервые употребил немецкий математик Кристоф Рудольф, из школы коссистов, в 1525 году. Происходит этот символ от стилизованной первой буквы того же слова radix . Черта над подкоренным выражением вначале отсутствовала; её позже ввёл Декарт (1637) для иной цели (вместо скобок), и эта черта вскоре слилась со знаком корня. Кубический корень в XVI веке обозначался следующим образом: R x .u.cu (от лат. Radix universalis cubica ). Привычное нам обозначение корня произвольной степени начал использовать Альбер Жирар (1629). Закрепился этот формат благодаря Исааку Ньютону и Готфриду Лейбницу.

Логарифм, десятичный логарифм, натуральный логарифм. И.Кеплер (1624), Б.Кавальери (1632), А. Принсхейм (1893).

Термин "логарифм" принадлежит шотландскому математику Джону Неперу («Описание удивительной таблицы логарифмов», 1614); он возник из сочетания от греческих слов λογος (слово, отношение) и αριθμος (число). Логарифм у Дж. Непера - вспомогательное число для измерения отношения двух чисел. Современное определение логарифма впервые дано английским математиком Уильямом Гардинером (1742). По определению, логарифм числа b по основанию a (a 1, a > 0 ) - показатель степени m , в которую следует возвести число a (называемое основанием логарифма), чтобы получить b . Обозначается log a b. Итак, m = log a b , если a m = b.

Первые таблицы десятичных логарифмов опубликовал в 1617 году оксфордский профессор математики Генри Бригс. Поэтому за рубежом десятичные логарифмы часто называют бригсовыми. Термин "натуральный логарифм" ввели Пьетро Менголи (1659) и Николас Меркатор (1668), хотя лондонский учитель математики Джон Спайделл ещё в 1619 году составил таблицу натуральных логарифмов.

До конца XIX века общепринятого обозначения логарифма не было, основание a указывалось то левее и выше символа log , то над ним. В конечном счёте математики пришли к выводу, что наиболее удобное место для основания - ниже строки, после символа log . Знак логарифма - результат сокращения слова "логарифм" - встречается в различных видах почти одновременно с появлением первых таблиц логарифмов, например Log - у И. Кеплера (1624) и Г. Бригса (1631), log - у Б. Кавальери (1632). Обозначение ln для натурального логарифма ввёл немецкий математик Альфред Прингсхейм (1893).

Синус, косинус, тангенс, котангенс. У.Оутред (сер. XVII века), И.Бернулли (XVIII в.), Л.Эйлер (1748, 1753).

Сокращённые обозначения для синуса и косинуса ввёл Уильям Оутред в середине XVII века. Сокращённые обозначения тангенса и котангенса: tg, ctg введены Иоганном Бернулли в XVIII веке, они получили распространение в Германии и России. В других странах употребляются названия этих функций tan, cot предложенные Альбером Жираром ещё ранее, в начале XVII века. В современную форму теорию тригонометрических функций привёл Леонард Эйлер (1748, 1753), ему же мы обязаны и закреплением настоящей символики. Термин "тригонометрические функции" введён немецким математиком и физиком Георгом Симоном Клюгелем в 1770 году.

Линия синуса у индийских математиков первоначально называлась «арха-джива» («полутетива», то есть половина хорды), затем слово «арха» было отброшено и линию синуса стали называть просто «джива» . Арабские переводчики не перевели слово «джива» арабским словом «ватар» , обозначающим тетиву и хорду, а транскрибировали арабскими буквами и стали называть линию синуса «джиба» . Так как в арабском языке краткие гласные не обозначаются, а долгое «и» в слове «джиба» обозначается так же, как полугласная «й», арабы стали произносить название линии синуса «джайб» , что буквально обозначает «впадина», «пазуха». При переводе арабских сочинений на латынь европейские переводчики перевели слово «джайб» латинским словом sinus , имеющим то же значение. Термин «тангенс» (от лат. tangens - касающийся) был введен датским математиком Томасом Финке в его книге «Геометрия круглого» (1583).

Арксинус. К.Шерфер (1772), Ж.Лагранж (1772).

Обратные тригонометрические функции - математические функции, которые являются обратными к тригонометрическим функциям. Название обратной тригонометрической функции образуется от названия соответствующей ей тригонометрической функции добавлением приставки "арк" (от лат. arc - дуга). К обратным тригонометрическим функциям обычно относят шесть функций: арксинус (arcsin), арккосинус (arccos), арктангенс (arctg), арккотангенс (arcctg), арксеканс (arcsec) и арккосеканс (arccosec). Впервые специальные символы для обратных тригонометрических функций использовал Даниил Бернулли (1729, 1736). Манера обозначать обратные тригонометрических функции с помощью приставки arc (от лат. arcus , дуга) появилась у австрийского математика Карла Шерфера и закрепилась благодаря французскому математику, астроному и механику Жозефу Луи Лагранжу. Имелось в виду, что, например, обычный синус позволяет по дуге окружности найти стягивающую её хорду, а обратная функция решает противоположную задачу. Английская и немецкая математические школы до конца XIX века предлагали иные обозначения: sin -1 и 1/sin, но они не получили широкого распространения.

Гиперболический синус, гиперболический косинус. В.Риккати (1757).

Первое появление гиперболических функций историки обнаружили в трудах английского математика Абрахама де Муавра (1707, 1722). Современное определение и обстоятельное их исследование выполнил итальянец Винченцо Риккати в 1757 году в работе «Opusculorum», он же предложил их обозначения: sh , ch . Риккати исходил из рассмотрения единичной гиперболы. Независимое открытие и дальнейшее исследование свойств гиперболических функций было проведено немецким математиком, физиком и философом Иоганном Ламбертом (1768), который установил широкий параллелизм формул обычной и гиперболической тригонометрии. Н.И. Лобачевский впоследствии использовал этот параллелизм, пытаясь доказать непротиворечивость неевклидовой геометрии, в которой обычная тригонометрия заменяется на гиперболическую.

Подобно тому, как тригонометрические синус и косинус являются координатами точки на координатной окружности, гиперболические синус и косинус являются координатами точки на гиперболе. Гиперболические функции выражаются через экспоненту и тесно связанных с тригонометрическими функциями: sh(x)=0,5(e x -e -x ) , ch(x)=0,5(e x +e -x ). По аналогии с тригонометрическими функциями определены гиперболические тангенс и котангенс как отношения гиперболических синуса и косинуса, косинуса и синуса, соответственно.

Дифференциал. Г.Лейбниц (1675, в печати 1684).

Главная, линейная часть приращения функции. Если функция y=f(x) одного переменного x имеет при x=x 0 производную, и приращение Δy=f(x 0 +?x)-f(x 0 ) функции f(x) можно представить в виде Δy=f"(x 0 )Δx+R(Δx ) , где член R бесконечно мал по сравнению с Δx . Первый член dy=f"(x 0 )Δx в этом разложении и называется дифференциалом функции f(x) в точке x 0 . В работах Готфрида Лейбница, Якоба и Иоганна Бернулли слово "differentia" употреблялось в смысле "приращение", его И. Бернулли обозначал через Δ. Г. Лейбниц (1675, в печати 1684) для "бесконечно малой разности" использовал обозначение d - первую букву слова "differential" , образованого им же от "differentia" .

Неопределённый интеграл. Г.Лейбниц (1675, в печати 1686).

Слово "интеграл" впервые в печати употребил Якоб Бернулли (1690). Возможно, термин образован от латинского integer - целый. По другому предположению, основой послужило латинское слово integro - приводить в прежнее состояние, восстанавливать. Знак ∫ используется для обозначения интеграла в математике и представляет собой стилизованное изображение первой буквы латинского слова summa - сумма. Впервые он был использован немецким математиком основателем дифференциального и интегрального исчислений Готфридом Лейбницем в конце XVII века. Другой из основателей дифференциального и интегрального исчислений Исаак Ньютон в своих работах не предложил альтернативной символики интеграла, хотя пробовал различные варианты: вертикальную черту над функцией или символ квадрата, который стоит перед функцией или окаймляет её. Неопределённый интеграл для функции y=f(x) — это совокупность всех первообразных данной функции.

Определённый интеграл. Ж.Фурье (1819-1822).

Определённый интеграл функции f(x) с нижним пределом a и верхним пределом b можно определить как разность F(b) - F(a) = a ∫ b f(x)dx , где F(х) - некоторая первообразная функции f(x) . Определённый интеграл a ∫ b f(x)dx численно равен площади фигуры, ограниченной осью абсцисс, прямыми x=a и x=b и графиком функции f(x) . Оформление определённого интеграла в привычном нам виде предложил французский математик и физик Жан Батист Жозеф Фурье в начале XIX века.

Производная. Г.Лейбниц (1675), Ж.Лагранж (1770, 1779).

Производная - основное понятие дифференциального исчисления, характеризующее скорость изменения функции f(x) при изменении аргумента x . Определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную в некоторой точке, называют дифференцируемой в данной точке. Процесс вычисления производной называется дифференцированием. Обратный процесс - интегрирование. В классическом дифференциальном исчислении производная чаще всего определяется через понятия теории пределов, однако исторически теория пределов появилась позже дифференциального исчисления.

Термин "производная" ввёл Жозеф Луи Лагранж в 1797 году, обозначения производной с помощью штриха - он же (1770, 1779), а dy/dx - Готфрид Лейбниц в 1675 году. Манера обозначать производную по времени точкой над буквой идёт от Ньютона (1691). Русский термин «производная функции» впервые употребил русский математик Василий Иванович Висковатов (1779-1812) .

Частная производная. А. Лежандр (1786), Ж.Лагранж (1797, 1801).

Для функций многих переменных определяются частные производные - производные по одному из аргументов, вычисленные в предположении, что остальные аргументы постоянны. Обозначения ∂f/x , z/y ввёл французский математик Адриен Мари Лежандр в 1786 году; f x " , z x " - Жозеф Луи Лагранж (1797, 1801); 2 z/x 2 , 2 z/xy - частные производные второго порядка - немецкий математик Карл Густав Якоб Якоби (1837).

Разность, приращение. И.Бернулли (кон. XVII в. - перв. пол. XVIII в.), Л.Эйлер (1755).

Обозначение приращения буквой Δ впервые употребил швейцарский математик Иоганн Бернулли. В общую практику использования символ "дельта" вошёл после работ Леонарда Эйлера в 1755 году.

Сумма. Л.Эйлер (1755).

Сумма - результат сложения величин (чисел, функций, векторов, матриц и т. д.). Для обозначения суммы n чисел a 1 , a 2 , ..., a n применяется греческая буква "сигма" Σ : a 1 + a 2 + ... + a n = Σ n i=1 a i = Σ n 1 a i . Знак Σ для суммы ввёл Леонард Эйлер в 1755 году.

Произведение. К.Гаусс (1812).

Произведение - результат умножения. Для обозначения произведения n чисел a 1 , a 2 , ..., a n применяется греческая буква "пи" Π: a 1 · a 2 · ... · a n = Π n i=1 a i = Π n 1 a i . Например, 1 · 3 · 5 · ... · 97 · 99 = ? 50 1 (2i-1). Знак Π для произведения ввёл немецкий математик Карл Гаусс в 1812 году. В русской математической литературе термин "произведение" впервые встречается у Леонтия Филипповича Магницкого в 1703 году.

Факториал. К.Крамп (1808).

Факториал числа n (обозначается n!, произносится "эн факториал") - произведение всех натуральных чисел до n включительно: n! = 1·2·3·...·n. Например, 5! = 1·2·3·4·5 = 120. По определению полагают 0! = 1. Факториал определён только для целых неотрицательных чисел. Факториал числа n равен числу перестановок из n элементов. Например, 3! = 6, действительно,

♣ ♦

♦ ♣

♦ ♣

♦ ♣

Все шесть и только шесть вариантов перестановок из трёх элементов.

Термин "факториал" ввёл французский математик и политический деятель Луи Франсуа Антуан Арбогаст (1800), обозначение n! - французский математик Кристиан Крамп (1808).

Модуль, абсолютная величина. К.Вейерштрасс (1841).

Модуль, абсолютная величина действительного числа х - неотрицательное число, определяемое следующим образом: |х| = х при х ≥ 0, и |х| = -х при х ≤ 0. Например, |7| = 7, |- 0,23| = -(-0,23) = 0,23. Модуль комплексного числа z = a + ib - действительное число, равное √(a 2 + b 2).

Считают, что термин "модуль" предложил использовать английский математик и философ, ученик Ньютона, Роджер Котс. Готфрид Лейбниц тоже использовал эту функцию, которую называл "модулем" и обозначал: mol x. Общепринятое обозначение абсолютной величины введено в 1841 году немецким математиком Карлом Вейерштрассом. Для комплексных чисел это понятие ввели французские математики Огюстен Коши и Жан Робер Арган в начале XIX века. В 1903 году австрийский учёный Конрад Лоренц использовал эту же символику для длины вектора.

Норма. Э.Шмидт (1908).

Норма - функционал, заданный на векторном пространстве и обобщающий понятие длины вектора или модуля числа. Знак "нормы" (от латинского слово "norma" - "правило", "образец") ввел немецкий математик Эрхард Шмидт в 1908 году.

Предел. С.Люилье (1786), У.Гамильтон (1853), многие математики (вплоть до нач. ХХ в.)

Предел - одно из основных понятий математического анализа, означающее, что некоторая переменная величина в рассматриваемом процессе ее изменения неограниченно приближается к определенному постоянному значению. Понятие предела на интуитивном уровне использовалось ещё во второй половине XVII века Исааком Ньютоном, а также математиками XVIII века, такими как Леонард Эйлер и Жозеф Луи Лагранж. Первые строгие определения предела последовательности дали Бернард Больцано в 1816 году и Огюстен Коши в 1821 году. Символ lim (3 первые буквы от латинского слова limes - граница) появился в 1787 году у швейцарского математика Симона Антуана Жана Люилье, но его использование ещё не напоминало современное. Выражение lim в более привычном для нас оформлении первым использовал ирландский математик Уильям Гамильтон в 1853 году. Близкое к современному обозначение ввёл Вейерштрасс, однако вместо привычной нам стрелки он использовал знак равенства. Стрелка появилась в начале XX века сразу у нескольких математиков - например, у английского математика Годфрида Харди в 1908 году.

Дзета-функция, дзета-функция Римана . Б.Риман (1857).

Аналитическая функция комплексного переменного s = σ + it, при σ > 1 определяемая абсолютно и равномерно сходящимся рядом Дирихле:

ζ(s) = 1 -s + 2 -s + 3 -s + ... .

При σ > 1 справедливо представление в виде произведения Эйлера:

ζ(s) = Π p (1-p -s) -s ,

где произведение берётся по всем простым p. Дзета-функция играет большую роль в теории чисел. Как функция вещественного переменного, дзета-функция была введена в 1737 году (опубликовано в 1744 г.) Л. Эйлером, который и указал её разложение в произведение. Затем эта функция рассматривалась немецким математиком Л. Дирихле и, особенно успешно, российским математиком и механиком П.Л. Чебышевым при изучении закона распределения простых чисел. Однако наиболее глубокие свойства дзета-функции были обнаружены позднее, после работы немецкого математика Георга Фридриха Бернхарда Римана (1859), где дзета-функция рассматривалась как функция комплексного переменного; им же введено название "дзета-функция" и обозначение ζ(s) в 1857 году.

Гамма-функция, Γ-функция Эйлера. А.Лежандр (1814).

Гамма-функция - математическая функция, которая расширяет понятие факториала на поле комплексных чисел. Обычно обозначается Γ(z). Г-функция впервые введена Леонардом Эйлером в 1729 году; она определяется формулой:

Γ(z) = lim n→∞ n!·n z /z(z+1)...(z+n).

Через Г-функцию выражается большое число интегралов, бесконечных произведений и сумм рядов. Широко используется в аналитической теории чисел. Название "Гамма-функция" и обозначение Γ(z) предложено французским математиком Адриеном Мари Лежандром в 1814 году.

Бета-функция, В-функция, В-функция Эйлера. Ж.Бине (1839).

Функция двух переменных p и q, определяемая при p>0, q>0 равенством:

В(p, q) = 0 ∫ 1 х р-1 (1-х) q-1 dx.

Бета-функцию можно выразить через Γ-функция: В(p, q) = Γ(p)Г(q)/Г(p+q). Подобно тому как гамма-функция для целых чисел является обобщением факториала, бета-функция, в некотором смысле, является обобщением биномиальных коэффициентов.

С помощью бета-функции описываются многие свойства элементарных частиц , участвующих в сильном взаимодействии . Эта особенность подмечена итальянским физиком-теоретиком Габриэле Венециано в 1968 году. Это положило начало теории струн .

Название "бета-функция" и обозначение В(p, q) ввёл в 1839 году французский математик, механик и астроном Жак Филипп Мари Бине.

Оператор Лапласа, лапласиан. Р.Мёрфи (1833).

Линейный дифференциальный оператор Δ, который функции φ(х 1 , х 2 , ..., х n) от n переменных х 1 , х 2 , ..., х n ставит в соответствие функцию:

Δφ = ∂ 2 φ/∂х 1 2 + ∂ 2 φ/∂х 2 2 + ... + ∂ 2 φ/∂х n 2 .

В частности для функции φ(х) одного переменного оператор Лапласа совпадает с оператором 2-й производной: Δφ = d 2 φ/dx 2 . Уравнение Δφ = 0 обычно называют уравнением Лапласа; отсюда и произошли названия "оператор Лапласа" или "лапласиан". Обозначение Δ ввёл английский физик и математик Роберт Мёрфи в 1833 году.

Оператор Гамильтона, набла-оператор, гамильтониан. О.Хевисайд (1892).

Векторный дифференциальный оператор вида

∇ = ∂/∂x · i + ∂/∂y · j + ∂/∂z · k ,

где i , j , и k - координатные орты. Через оператор набла естественным способом выражаются основные операции векторного анализа, а так же оператор Лапласа.

В 1853 году ирландский математик Уильям Роуэн Гамильтон ввёл этот оператор и придумал для него символ ∇ в виде перевёрнутой греческой буквы Δ (дельта). У Гамильтона острие символа указывало налево, позже в работах шотландского математика и физика Питера Гатри Тэйта символ приобрёл современный вид. Гамильтон назвал этот символ словом «атлед» (слово «дельта», прочитанное наоборот). Позднее английские учёные, в том числе Оливер Хевисайд, стали называть этот символ «набла», по названию буквы ∇ в финикийском алфавите, где она и встречается. Происхождение буквы связано с музыкальным инструментом типа арфы, ναβλα (набла) по-древнегречески означает «арфа». Оператор получил название оператора Гамильтона, или оператора набла.

Функция. И.Бернулли (1718), Л.Эйлер (1734).

Математическое понятие, отражающее связь между элементами множеств. Можно сказать, что функция - это "закон", " правило" по которому каждому элементу одного множества (называемому областью определения) ставится в соответствие некоторый элемент другого множества (называемого областью значений). Математическое понятие функции выражает интуитивное представление о том, как одна величина полностью определяет значение другой величины. Часто под термином "функция" понимается числовая функция; то есть функция которая ставит одни числа в соответствие другим. Долгое время математики задавали аргументы без скобок, например, так - φх. Впервые подобное обозначение использовал швейцарский математик Иоганн Бернулли в 1718 году. Скобки использовались только в случае многих аргументов, а также если аргумент представлял собой сложное выражение. Отголоском тех времён являются употребительные и сейчас записи sin x, lg x и др. Но постепенно использование скобок, f(x) , стало общим правилом. И основная заслуга в этом принадлежит Леонарду Эйлеру.

Равенство. Р.Рекорд (1557).

Знак равенства предложил уэльский врач и математик Роберт Рекорд в 1557 году; начертание символа было намного длиннее нынешнего, так как имитировало изображение двух параллельных отрезков. Автор пояснил, что нет в мире ничего более равного, чем два параллельных отрезка одинаковой длины. До этого в античной и средневековой математике равенство обозначалось словесно (например est egale ). Рене Декарт в XVII веке при записи стал использовать æ (от лат. aequalis ), а современный знак равенства он использовал чтобы указать, что коэффициент может быть отрицательным. Франсуа Виет знаком равенства обозначал вычитание. Символ Рекорда получил распространение далеко не сразу. Распространению символа Рекорда мешало то обстоятельство, что с античных времён такой же символ использовался для обозначения параллельности прямых; в конце концов было решено символ параллельности сделать вертикальным. В континентальной Европе знак "= " был введён Готфридом Лейбницем только на рубеже XVII-XVIII веков, то есть более чем через 100 лет, после смерти впервые использовавшего его для этого Роберта Рекорда.

Примерно равно, приблизительно равно. А.Гюнтер (1882).

Знак "≈ " ввёл в использование как символ отношения "примерно равно" немецкий математик и физик Адам Вильгельм Зигмунд Гюнтер в 1882 году.

Больше, меньше. Т.Гарриот (1631).

Эти два знака ввёл в использование английский астроном, математик, этнограф и переводчик Томас Гарриот в 1631 году, до этого использовали слова "больше" и "меньше".

Сравнимость. К.Гаусс (1801).

Сравнение - соотношение между двумя целыми числами n и m, означающее, что разность n-m этих чисел делится на заданное целое число а, называемое модулем сравнения; пишется: n≡m(mod а) и читается "числа n и m сравнимы по модулю а". Например, 3≡11(mod 4), так как 3-11 делится на 4; числа 3 и 11 сравнимы по модулю 4. Сравнения обладают многими свойствами, аналогичными свойствам равенств. Так, слагаемое, находящееся в одной части сравнения можно перенести с обратным знаком в другую часть, а сравнения с одним и тем же модулем можно складывать, вычитать, умножать, обе части сравнения можно умножать на одно и то же число и др. Например,

3≡9+2(mod 4) и 3-2≡9(mod 4)

Одновременно верные сравнения. А из пары верных сравнений 3≡11(mod 4) и 1≡5(mod 4) следует верность следующих:

3+1≡11+5(mod 4)

3-1≡11-5(mod 4)

3·1≡11·5(mod 4)

3 2 ≡11 2 (mod 4)

3·23≡11·23(mod 4)

В теории чисел рассматриваются методы решения различных сравнений, т.е. методы отыскания целых чисел, удовлетворяющих сравнениям того или иного вида. Cравнения по модулю впервые использовались немецким математиком Карлом Гауссом в его книге «Арифметические исследования» 1801 года. Он же предложил утвердившуюся в математике символику для сравнений.

Тождество. Б.Риман (1857).

Тождество - равенство двух аналитических выражений, справедливое для любых допустимых значений входящих в него букв. Равенство a+b = b+a справедливо при всех числовых значениях a и b, и поэтому является тождеством. Для записи тождеств в некоторых случаях с 1857 года применяется знак "≡ " (читается "тождественно равно"), автором которого в таком использовании, является немецкий математик Георг Фридрих Бернхард Риман. Можно записать a+b ≡ b+a.

Перпендикулярность. П.Эригон (1634).

Перпендикулярность - взаимное расположение двух прямых, плоскостей или прямой и плоскости, при котором указанные фигуры составляют прямой угол. Знак ⊥ для обозначения перпендикулярности ввёл в 1634 году французский математик и астроном Пьер Эригон. Понятие перпендикулярности имеет ряд обобщений, но всем им, как правило, сопутствует знак ⊥ .

Параллельность. У.Оутред (посмертное издание 1677 года).

Параллельность - отношение между некоторыми геометрическими фигурами; например, прямыми. Определяется по-разному в зависимости от различных геометрий; например, в геометрии Евклида и в геометрии Лобачевского. Знак параллельности известен с античных времён, его использовали Герон и Папп Александрийский. Сначала символ был похож на нынешний знак равенства (только более протяжённый), но с появлением последнего, во избежание путаницы, символ был повёрнут вертикально ||. В таком виде он появился впервые в посмертном издании работ английского математика Уильяма Оутреда в 1677 году.

Пересечение, объединение. Дж.Пеано (1888).

Пересечение множеств - это множество, которому принадлежат те и только те элементы, которые одновременно принадлежат всем данным множествам. Объединение множеств - множество, содержащее в себе все элементы исходных множеств. Пересечением и объединением называются и операции над множествами, ставящие в соответствие некоторым множествам новые по указанным выше правилам. Обозначаются ∩ и ∪, соответственно. Например, если

А= {♠ ♣ } и В= {♣ ♦ },

То

А∩В={♣ }

А∪В={♠ ♣ ♦ } .

Содержится, содержит. Э.Шрёдер (1890).

Если А и В - два множества и в А нет элементов, не принадлежащих В, то говорят что А содержится в В. Пишут А⊂В или В⊃А (В содержит А). Например,

{♠}⊂{♠ ♣}⊂{♠ ♣ ♦ }

{♠ ♣ ♦ }⊃{ ♦ }⊃{♦ }

Символы "содержится" и "содержит" появились в 1890 году у немецкого математика логика Эрнста Шрёдера.

Принадлежность. Дж.Пеано (1895).

Если а - элемент множества А, то пишут а∈А и читают "а принадлежит А". Если а не является элементом множества А, пишут а∉А и читают "а не принадлежит А". Вначале отношения "содержится" и "принадлежит" ("является элементом") не различали, но со временем эти понятия потребовали разграничения. Знак принадлежности ∈ впервые стал использовать итальянский математик Джузеппе Пеано в 1895 году. Символ ∈ происходит от первой буквы греческого слова εστι - быть.

Квантор всеобщности, квантор существования. Г.Генцен (1935), Ч.Пирс (1885).

Квантор - общее название для логических операций, указывающих область истинности какого-либо предиката (математического высказывания). Философы давно обращали внимание на логические операции, ограничивающие область истинности предиката, однако не выделяли их в отдельный класс операций. Хотя кванторно-логические конструкции широко используются как в научной, так и в обыденной речи, их формализация произошла только в 1879 году, в книге немецкого логика, математика и философа Фридриха Людвига Готлоба Фреге «Исчисление понятий». Обозначения Фреге имели вид громоздких графических конструкций и не были приняты. Впоследствии было предложено множество более удачных символов, но общепринятыми стали обозначения ∃ для квантора существования (читается "существует", "найдётся"), предложенное американским философом, логиком и математиком Чарльзом Пирсом в 1885 году, и ∀ для квантора всеобщности (читается "любой", "каждый", "всякий"), образованное немецким математиком и логиком Герхардом Карлом Эрихом Генценом в 1935 году по аналогии с символом квантора существования (перевёрнутые первые буквы английских слов Existence (существование) и Any (любой)). Например, запись

(∀ε>0) (∃δ>0) (∀x≠x 0 , |x-x 0 |<δ) (|f(x)-A|<ε)

читается так: "для любого ε>0 существует δ>0 такое, что для всех х, не равных х 0 и удовлетворяющих неравенству |x-x 0 |<δ, выполняется неравенство |f(x)-A|<ε".

Пустое множество. Н.Бурбаки (1939).

Множество, не содержащее ни одного элемента. Знак пустого множества был введён в книгах Николя Бурбаки в 1939 году. Бурбаки - коллективный псевдоним группы французских математиков, созданной в 1935 году. Одним из участников группы Бурбаки был Андре Вейль - автор символа Ø.

Что и требовалось доказать. Д.Кнут (1978).

В математике под доказательством понимается последовательность рассуждений, построеных на определённых правилах, показывающая, что верно некоторое утверждение. Со времён эпохи Возрождения окончание доказательства обозначалось математиками сокращением "Q.E.D.", от латинского выражения "Quod Erat Demonstrandum" - "Что и требовалось доказать". При создании системы компьютерной вёрстки ΤΕΧ в 1978 году американский профессор информатики Дональд Эдвин Кнут использовал символ: заполненный квадрат, так называемый "символ Халмоша", по имени американского математика венгерского происхождения Пола Ричарда Халмоша. Сегодня завершение доказательства как правило обозначают Символом Халмоша. В качестве альтернативы используют и другие знаки: пустой квадрат, правый треугольник, // (две косых черты), а также русскую аббревиатуру "ч.т.д.".

На лекционных и практических занятиях будет принята система обозначений и символики (табл. 2,3), разработанная проф. Н.Ф.Четверухиным. Система этих обозначений широко применяется в настоящее время кафедрами начертательной геометрии и инженерной графики ведущих вузов России.

Таблица 2

ОБОЗНАЧЕНИЯ ГЕОМЕТРИЧЕСКИХ ОБЪЕКТОВ

Геометрическая фигура (объект) Обозначение и пример
Точка Прописная буква латинского алфавита: А , В , С , … или арабская цифра: 1 , 2 , 3 , … (может быть римская цифра:I , II , III , …). Центр проецирования S . Начало координатО (буква). Точка в бесконечности: S ¥ , А ¥ , В ¥ , ….
Линия – прямая или кривая Строчная буква латинского алфавита: a ,b ,c , …. Горизонталь h ; фронтальf ; профильная прямая или кривая (профиль) р ; ось вращения i ; направление проецирования или направление взгляда в пространстве: s – на П 1 , v – на П 2 ; оси координат: x , y , z ; оси проекций x , y , z или x 12 , x 24 и т.д. (АВ ) – прямая, определяемая точкамиА и В ; ΙАВ Ι – длина отрезка АВ , натуральная величина отрезка АВ . Скобки не даются, если в тексте имеются соответствующие слова (например, прямая АВ ).
Поверхность (включая плоскость) Г (гамма), S (сигма), L (лямбда), ….
Плоскость проекций Прописная буква греческого алфавита: П (пи) с добавлением индекса. П 1 – горизонтальная плоскость проекций; П 2 – фронтальная плоскость проекций; П 3 – профильная плоскость проекций; П 4 , П 5 , … – дополнительные плоскости проекций.
Угол Строчная буква греческого алфавита: a , b , g , ….
Проекция объекта А 1 , b 1 , S 1 – горизонтальные проекции точки А , линии b , поверхности S ; А 2 , b 2 , S 2 – фронтальные проекции точки А , прямой b , поверхности S ; и т.д.

Таблица 3

СИМВОЛЫ ВЗАИМОРАСПОЛОЖЕНИЯ И ЛОГИЧЕСКИХ ОПЕРАЦИЙ

Знак Смысл знака Пример, пояснение
Ì или É Î или " Взаимная принадлежность (инцидентность) объектов как множеств, подмножеств Взаимная принадлежность (инцидентность) объектов, из которых один – множество, другой – элемент множества, т.е. точка t ÌГ – линия t принадлежит поверхности Г ; поверхность Г проходит через линию t ; Г Ét – то же (знак открытой частью всегда обращен в сторону большего множества). t"А – линия t проходит через точку А ; точка А принадлежит линии t ; А Ît – то же (знак Î открытой частью обращен в сторону множества).
Пересечение а b – линии a и b пересекаются; S (a b ) – плоскость S задана пересекающимися прямыми a и b .
= или Результат Равенство Совпадение А =а b – точкаА получена в результате пересечения линий a и b. êАВ ê=êЕF ê– отрезок АВ равен отрезку ЕF . А 2 =В 2 – фронтальные проекции точекА и В совпадают.
ΙΙ Параллельность (АВ ) ΙΙ (СD) – прямые АВ и СD параллельны.
^ Перпендикулярность АВ ^СD
® Отображается, последовательность действий А 1 ®А 2 – по горизонтальной проекции точкиА строим фронтальную.

4. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ ГРАФИЧЕСКИХ РАБОТ

Графическая работа № 1

«Проецирование»

Задание:

1. На формате А3 по двум заданным проекциям домика построить профильную проекцию, увеличив изображение в 2 раза.

2. Определить на чертеже, обозначить и записать в таблице в правом нижнем углу (размер таблицы – 100х100 мм), расположенной над основной надписью, положение прямых в пространстве (прямую общего положения, три линии уровня, три проецирующие прямые, одну пару параллельных прямых, одну пару пересекающихся прямых, одну пару скрещивающихся прямых).

3. Определить натуральную величину прямой общего положения и углы наклона ее к плоскостям проекций.

4. Определить координаты любых пяти обозначенных точек. Данные внести в таблицу в правом верхнем углу формата (размер таблицы 40х60 мм).

5. Выбрать и построить на формате А4 аксонометрическую проекцию домика, начертить схему аксонометрических осей. Аксонометрию затонировать цветными карандашами.

Указания к выполнению графической работы №1. На листе формата А3 провести оси координат в центре листа. Согласно своему варианту построить две проекции «Домика», увеличив изображение в 2 раза. Фронтальная проекция основания «домика» должна находиться на оси ОХ. С помощью линий проекционной связи построить третью проекцию «домика».

Далее последовательно определить и обозначить заглавными буквами латинского алфавита на трех проекциях «домика» прямые, указанные в задании. Полученные результаты внести в таблицу. Образец заполнения таблицы приведен на рисунке.

Для найденной прямой общего положения на плоскости П 1 и П 2 определить и обозначить натуральную величину способом прямоугольного треугольника и углы наклона ее к горизонтальной и фронтальной плоскостям проекций (α и β).

Для любых пяти обозначенных точек определить координаты. Значения в мм занести в таблицу. Образец заполнения таблицы приведен на рисунке.

Выбрать вид аксонометрической проекции таким образом, чтобы на изображении домика плоскости (грани) не проецировались в линии. На формате А4 построить выбранную аксонометрическую проекцию, сохраняя вторичную горизонтальную проекцию и аксонометрические оси.

С помощью цветных карандашей выполнить тонировку аксонометрической проекции «Домика». В правом верхнем углу начертить схему аксонометрических осей. Пример графической работы на рисунке 9,10.


Варианты заданий к графической работе №1 «Проецирование»






Графическая работа № 2

«Построение усеченной призмы и усеченного цилиндра»

Задание:

Графическая работа выполняется на двух форматах А3, и состоит из двух задач.

Задача №1. Построить три проекции прямой шестигранной призмы (данные для построения взять из таблицы по своему варианту). Построить натуральную величину контура сечения применив способом замены плоскостей проекций. Построить развертку. Выбрать и начертить аксонометрическую проекцию. Размеры не наносить. На чертеже должны быть обозначены точки для построения и линии проекционной связи.